Assembly - You Can Do It!
77U -TARDELLK !

try! Swift Tokyo
22H3H2019

Andrew Madsen
NNtV RKRYa

About Me B BN

XIDATABLILESIDPWVWELXRT,

About Me B ZH#EN

Lifelong Programmer

FEHDOENSTOYFV—TT

FEHBDBENSTOTIN—TT, COLY > ULAICIEFAEZE W TUL T,

About Me B ZH#EN

Electrical Engineer

BRI TY

ThREIOMKBHBIETYT, FLWHNK TEIIZZENAZT LD ULE U, KZDHE, LZETARY hZTHA Y ULE UL,

File Edit_View Log Window _Help

= Acther LogbookIgbkdb

8 il
Lookup Calion QRZage Mep Add o Address ook Send s Sync Olne Qs tstion o

O vt First AriHa Last GO

Frequency 14.04800 Band 20m Zplloetit] County [tartiord

Mode [ov) rower 100 Couny [Uned sares G 50, Pisier

] - st (B o Bnees e | Lthode SL7078 Lot 7272726
ve peen doing Locoa s s e o

News0 || Deieie || Update Time

development since 2005. M

United States
Uaine

Canada

France N18dd
Cuba

Hungary N96uw

20055 H 5Cocoa7AY 5 I Y SEE BEEEE-E T

Cuba
Macedonia

Zor
0B 59 John usa
09/8/10 22 Betish Virg
o 09/1/10 2103 HAIAG 599 599 . Hungary N8t

First taly
Dundo Cuba

2005%F(CCocoa”OT oI %IFUOHF U, FUMKS., 200 8FICIOSHNES U &S5 ULTIOSTAY IV I %#BHE U,

About Me BN

| teach iOS development at b d
Lambda School. @ Lam a

Lambda School GiOS70O% 5
V) EHBAIET

WELZEFIOSTOYZIVIEEULASB T ETY, LambdaSchoolE WSN > ZTlEfcBWTWEYT, COLEELWT ETY,

About Me B ZH#EN

| collect old computers

LhONY IV ZEHET

FTERLwAEIL MOV AV EHDHIETY, FEAEICAPPleLDEEDHET,

About Me B2 N |
15 years ago, | lived in Japan. ‘.

I’ve loved it ever since.

1 5&ERilCEREICFEATVWE U .
ZORHOSHELKRFEZTY

1 BEFZICHAKRICEATWE UTco BERNKFET HAICWBDTIEFAEICSNULWTT,

Goal
Intimidated
Show you the basics, learn more

Show you how it can help you

Let's talk about assembly. My goal here is not to teach you everything there is to know about assembly. After all, we only have 20 minutes. But | think most programmers
are a little intimidated by assembly language. | want to show you the basics so that you won't be scared of it, and instead will be ready to learn more. | also want to show
you how knowing assembly can help you be a better iOS developer and debugger.

Assembly 9o

Tt J) &

Why Learn Assembly?

BREF7EVTVEEZEEZE
WIEADIVWWNTT H ?

- Don't usually need to write
- Understanding can help you with:
- Debugging
- Exploring Apple frameworks

You don’t often need to actually write assembly, unless you’re doing *extremely* performance intensive work, or working on very low-power embedded processors.
However, understanding assembly can help you with debugging. You can also explore Apple’s frameworks to understand exactly what they’re doing inside. Knowing a
little assembly goes a long way when trying to debug tricky problems, or to understand exactly _how_ something works.

=R SE

C Objective-C

Assembly 7t > 7Y
Lower Level

=
iﬂﬁ* = AR Machine Code 11 =&

Machine code
Assembly is almost a direct representation of machine code
When you compile, you get machine code
Disassemble to see it in assembly

At the lowest level, the CPU in every device runs machine code, which is just binary numbers. Assembly is very close to being a direct representation of machine code,
it's just written in a way that's easier for humans to read, write, and understand. When you compile a language like Swift, C, Objective-C, or C++, the compiler outputs a
machine code executable. Various tools will "disassemble" this and show it to you as if it were assembly. This allows you to look at compiled code and understand what
it's doing without the source.

Registers

L IRY —

In order to understand assembly, there are some vocabulary words we need to learn. The first is "register".

Registers L 3 X5 —

Small, individual pieces of memory

How many there are, names, and sizes depends on the CPU

Some are general purpose, some dedicated, some have usage specified
by convention

Directly inside the CPU, unlike RAM

Fast

A register is a small, individual piece of memory. On x86_64, which we'll be talking about today, each register can hold an 8-byte (64-bit) value. The specifics of registers,
their names, sizes, and what they're used for, varies depending on the CPU architecture and platform you're on. Some registers are general purpose, meaning you can
use them for whatever you'd like. Some are dedicated to a specific usage by the CPU. And some have usage that is specified by convention. Registers are directly inside
the CPU, unlike RAM, which means that accessing them is very fast.

Registers L 3 X5 —

You can think of them like variables.
LIOXAYIEAIZERUSSWTY

Think of registers like temporary variables in assembly code.

Registers L 3 X5 —

On x86_64, there are 16 registers you should know about. They are rax, rbx, rcx, rdx, rbp, rsp, rsi, rdi, and r8-r15. We'll talk about what a few of these are used for later
on.

Mnemonics

——EZv Y

In assembly language, each line of code is a single instruction. The CPU defines the specific instructions you can use. We use mnemonics to refer to instructions in
assembly.

Mnemonic ——F=wvy

A mnemonic is an easy to remember ——FEZyvJIEEZIPITLCPURTD
name for a CPU instruction. 2T,

A mnemonic is an easy to remember name for a CPU instruction. Lets look at some examples.

Here are few common instruction mnemonics from the x86_64
- mov

- add

- sub

- cmp

- jne

- nop

- Pop

- ret

Here are a few common instruction mnemonics from the x86_64 instruction set. mov moves data from one place to another. add adds two things together. sub subtracts
two things. cmp compares two numbers (essentially performing subtraction). jne stands for jump (if) not equal, and allows you to jump to a different part of the code
based on the results of the previous cmp instruction. nop is a "nothing" instruction. It tells the CPU to take a break and not do anything this cycle, and can be used to
introduce intentional delays. call is used to call a function/subroutine. pop pops the stack, and ret returns from a subroutine to the calling code.

This list is *far* from exhaustive, but all of these instructions are used frequently.

Mnemonics ——E=wv ¥

T e
t

0]

In assembly language, each line of code will have an instruction followed by between 0 and 2 operands. For example, here mov r8 0x42 means mov (or copy) the hex
value 0x42 into register r8. add r8 0x01 means add one to the value in r8 (storing the result in r8).

Note that there are two common syntax formats used for assembly, Intel, and AT&T. While AT&T is the default in Xcode, | find Intel syntax easier to read, and will be using
that in this talk.

Mnemonics ——E=wv ¥

mov r8 0x42

In Intel syntax, for instructions that take two operands, the destination of the operation (a register, memory location, etc.) is always the first operand, and the source of the
operation is the second operand.

Calling Convention

I H AR Y

Calling Convention IEH R £Y

int main(int argc, char xargv[]) {
long c = add(2, 3);
printf("sli", c);

}

long add(long a, long b) {
return a + b;

}

When some code calls a function, it has to pass in its arguments, and retrieve the value the function returns. This is done by having the calling code put the argument
values in registers, while the function puts its return value in a register. Which registers to use for the arguments and return value have to be agreed upon by the calling
code and the function being called. “Calling convention” refers to the agreed upon registers to use for function arguments and return values. The specifics of the calling
convention depend on the CPU and platform. On UNIX systems running on x86_64 like iOS and OS X, the standard calling convention is the System V calling convention.

Calling Convention IEH R £Y

return value rax

Here’s a list of arguments and the register used to pass them. If a function takes more than 6 arguments, additional arguments are passed on the stack. It’s helpful to
memorize this list, because you can use them in debugging.

Calling Convention IEH R £Y

int main(int argc, char *argv[]) {
long c = add(2, 3);

printf("sli", c);
I

long add(long a, long b) {
return a + b;

by

return value

Let’s take a look at how this works.

Calling Convention IEH R £Y

int main(int argc, char *argv[]) {
Tong ¢ = add(2,37);
printf("sli", c);

by

long add(long a, long b) {
return a + b;

by

return value

First, the arguments to the add call must be placed in the correct registers. According to the calling convention, the first argument, 2, goes in rdi.

Calling Convention IEH R £Y

int main(int argc, char *argv[]) {

Tong ¢ = add(2,73);
printf("sli", c);

by

long add(long a, long b) {
return a + b;

by

return value

The second argument, 3, goes in rsi.

Calling Convention IEH R £Y

int main(int argc, char *argv[]) {

Tong ¢ = add(2,3);
printf("sli", c);

by

long add(long a, long b) {
return a + b;

by

return value

Then, the add() function is called, and starts executing.

Calling Convention IEH R £Y

int main(int argc, char *argv[]) {
long c = add(2, 3);

printf("sli", c);
I

long add(long a, long b) {
return a + b;

by

return value

It needs to retrieve its arguments. So, it gets a (2) from rdi.

Calling Convention IEH R £Y

int main(int argc, char *argv[]) {
long c = add(2, 3);

printf("sli", c);
I

long add(long a, long b) {
return 2 + b;

by

return value

And it gets the second argument, b, from rsi.

Calling Convention IEH R £Y

int main(int argc, char *argv[]) {
long c = add(2, 3);

printf("sli", c);
I

long add(long a, long b) {
return 2 + 3;

by

return value

It performs its calculation, then puts the return value (5) in rax.

Calling Convention IEH R £Y

int main(int argc, char *argv[]) {
long c = add(2, 3);

printf("sli", c);
I

long add(long a, long b) {
return 2 + 3;

by

return value

Control is returned to the call site in main().

Calling Convention IEH R £Y

int main(int argc, char *argv[]) {

Tong ¢ = add(2,3);
printf("sli", c);

by

long add(long a, long b) {
return 2 + 3;

by

return value

Now, to get the return value to assign to c, the value in the rax register is retrieved.

Calling Convention IEH R £Y

int main(int argc, char *argv[]) {
Tong ¢ = 5 add(2, 3);
printf("sli", c);

by

long add(long a, long b) {
return 2 + 3;

by

return value

Calling Convention IEH R £Y

int main(int argc, char *argv[]) {
long c = add(2, 3);
printf("sli", 5);

+

long add(long a, long b) {
return 2 + 3;

by

return value

And the execution proceeds to the next line.

Addition &

long add(long a, long b) {
return a + b;

}

Let's look at a very simple function that takes two arguments, adds them together and returns the result. We're writing this in C, but it would look very similar written in
Swift.

Addition &

add:

push rbp

mov rbp, rsp

mov qword [rbp-8]1, rdi
mov qgword [rbp-16], rsi

long add(long a, long b) {
return a + b;

by

mov rsi, qword [rbp-8]
add rsi, qword [rbp-16]
mov rax, rsi

pop rbp

ret

00O NOGOUL A~ WNEREOI

After compiling this function, if we look at the assembly, it will look like this. Note that despite this function only being one line long, it's 9 lines long in (unoptimized)
assembly! However, we can break this down line by line and understand what's going on. Let's dive in.

0
1
2
3
4
5
6
7
8

Addition &

rbp

rbp, rsp

qword [rbp-8], rdi
qword [rbp-16], rsi
rsi, qword [rbp-8]
rsi, qword [rbp-16]
rax, rsi

rbp

Addition &

rbp

rbp, rsp

qword [rbp-8], rdi
qword [rbp-16], rsi
rsi, qword [rbp-8]
rsi, qword [rbp-16]
rax, rsi

rbp

0
1
2
3
4
5
6
7
8

At the beginning of the function is what is called the function prologue. The function prolog sets some things up for the body of the function to execute. In particular, first
we set up the stack by pushing the existing stack pointer onto the stack, then saving a new base pointer.

Addition &

rbp

rbp, rsp

qword [rbp-8], rdi

qword [rbp-16], rsi
rsi, qword [rbp-8]

rsi, qword [rbp-16]
rax, rsi

rbp

0
1
P
3
4
5
6
7
8

Next, we get the arguments. Remember, that according to calling convention, rdi contains the first argument to a function, and rsi contains the second argument. We
copy these arguments on to the stack.

0
1
2
3
4
5
6
7
8

Addition &

rbp

rbp, rsp

qword [rbp-8], rdi
qword [rbp-16], rsi
rsi, qword [rbp-8]
rsi, qword [rbp-16]
rax, rsi

rbp

Addition &

rbp

rbp, rsp

qword [rbp-8], rdi
qword [rbp-16], rsi
rsi, qword [rbp-8]
rsi, qword [rbp-16]
rax, rsi

rbp

0
1
2
3
4
5
6
7
8

Now, we’re ready to actually to the addition. First, we copy 'a’ into the rsi register. Remember that rbp-8 here contains the value of the a argument due to line 2.

Addition &

rbp

rbp, rsp

qword [rbp-8], rdi
qword [rbp-16], rsi
rsi, qword [rbp-8]
rsi, qword [rbp-16]
rax, rsi

rbp

0
1
2
3
4
5
6
7
8

Next, we’ll use the add instruction to add b to the value in rsi (a). rbp-16 contains the value of b, because of line 3.

Addition &

rbp

rbp, rsp

qword [rbp-8], rdi
qword [rbp-16], rsi
rsi, qword [rbp-8]
rsi, qword [rbp-16]
rax, rsi

rbp

0
1
2
3
4
5
6
7
8

Finally, we’ll mov the value in rsi into rax. Calling convention specifies that rax should hold the return value of the function, and the code that called our "add()’ function is
going to look there.

Addition &

rbp

rbp, rsp

qword [rbp-8], rdi
qword [rbp-16], rsi
rsi, qword [rbp-8]
rsi, qword [rbp-16]
rax, rsi

rbp

0
1
2
3
4
5
6
7
8

Finally, restore the stack base pointer to what it was when the function started, cleaning up after ourselves.

And we can return from the function!

0
1
2
3
4
5
6
7
8

Addition &

rbp

rbp, rsp

qword [rbp-8], rdi
qword [rbp-16], rsi
rsi, qword [rbp-8]
rsi, qword [rbp-16]
rax, rsi

rbp

Debugging with Assembly

\Y

T TJUTTINvFE Y

Let’s talk about how you can use assembly to actually help you as an iOS developer. It comes up most often in debugging. Have you ever been debugging only to
experience a crash or error in system code, where you see a bunch of assembly? With just a little knowledge of assembly, you can often find useful information.

Debugging with Assembly
7eryITITTINNy XD

In Objective-C Mode:
Objective-CDE— N

po $rdi

In lldb, in Objective-C mode, you can print a register by prefixing its name with a dollar sign ($). For example, here’s how you’d print the value in the rdi register.

Debugging with Assembly
7eryITITTINNy XD

Debugging with Assembly
7eryITITTINNy XD

(1ldb) b -[UIResponder touchesBegan:withEvent:]

Let’s say we want to break whenever the touchesBegan: method is called on any object. We can create a breakpoint with the b command in lldb, passing the Objective-C
method we want to break on.

Debugging with Assembly
7eryITITTINNy XD

(1ldb) b -[UIResponder touchesBegan:withEvent:]

Breakpoint 3: where = UIKitCore'-[UIResponder touchesBegan:withEvent:], address = 0x000000010e7bc745
(1ldb)

Debugging with Assembly
7eryITITTINNy XD

(1ldb) b -[UIResponder touchesBegan:withEvent:]
Breakpoint 3: where = UIKitCore'-[UIResponder touchesBegan:withEvent:], address = 0x000000010e7bc745
(1ldb) po $rdi

Now, when our program stops because the breakpoint is hit, we want to know which object it was called on. Because it’'s Objective-C (or dynamically dispatched Swift),
the function being called is actually objc_msgSend(), and the first argument is the receiver of the message. So, we can print out the rdi register to find out what object the
method was called on.

Debugging with Assembly
7eryITITTINNy XD

(1ldb) b -[UIResponder touchesBegan:withEvent:]
Breakpoint 3: where = UIKitCore'-[UIResponder touchesBegan:withEvent:], address = 0x000000010e7bc745

(1ldb) po $rdi
<UITableViewCellContentView: 0x7fbf76124160;

(lldb)

Debugging with Assembly
7eryITITTINNy XD

(1ldb) b -[UIResponder touchesBegan:withEvent:]
Breakpoint 3: where = UIKitCore'-[UIResponder touchesBegan:withEvent:], address = 0x000000010e7bc745

(1ldb) po $rdi
<UITableViewCellContentView: 0x7fbf76124160;

(1ldb) po (SEL)$rsi

If we print out the value of rsi, the second argument, we can see the selector. This is because the second argument to objc_msgSend() is the selector for the message

being sent.

Debugging with Assembly
7eryITITTINNy XD

(1ldb) b -[UIResponder touchesBegan:withEvent:]

Breakpoint 3: where = UIKitCore'-[UIResponder touchesBegan:withEvent:], address = 0x000000010e7bc745
(1ldb) po $rdi

<UITableViewCellContentView: 0x7fbf76124160;

(1ldb) po (SEL)$rsi
"touchesBegan:withEvent:"
(1ldb)

If we print out the value of rsi, the second argument, we can see the selector. This is because the second argument to objc_msgSend() is the selector for the message
being sent.

Debugging with Assembly
7eryITITTINNy XD

(1ldb) b -[UIResponder touchesBegan:withEvent:]

Breakpoint 3: where = UIKitCore'-[UIResponder touchesBegan:withEvent:], address = 0x000000010e7bc745
(1ldb) po $rdi

<UITableViewCellContentView: 0x7fbf76124160;

(1ldb) po (SEL)$rsi
"touchesBegan:withEvent:"
(1ldb) po (id)$rdx

Finally, we might want to inspect the touch object(s) passed into the method. Even though the touches are the *first* argument of the -touchesBegan:withEvent: method,
they’re the *third* argument to objc_msgSend, so we need to look at the register for argument 3. Remembering back to our calling convention, that’s rdx.

Debugging with Assembly
7eryITITTINNy XD

(1ldb) b -[UIResponder touchesBegan:withEvent:]
Breakpoint 3: where = UIKitCore'-[UIResponder touchesBegan:withEvent:], address = 0x000000010e7bc745

(1ldb) po $rdi
<UITableViewCellContentView: 0x7fbf76124160;

(1ldb) po (SEL)$rsi
"touchesBegan:withEvent:"
(1ldb) po (id)$rdx
{(

<UITouch: @x7fbf76f4dc50>

)}
(1ldb)

And we can see the touch that triggered the touchesBegan method!

Debugging with Assembly
7eryITITTINNy XD

(1ldb) b -[UIResponder touchesBegan:withEvent:]

Breakpoint 3: where = UIKitCore'-[UIResponder touchesBegan:withEvent:], address = 0x000000010e7bc745
(1ldb) po $rdi

<UITableViewCellContentView: 0x7fbf76124160;

(1ldb) po (SEL)$rsi
"touchesBegan:withEvent:"
(1ldb) po (id)$rdx

1 Ox7fbf76f4dc50>

)}
(1ldb)

Debugging with Assembly
7eryITITTINNy XD
Swift Hint/ £ b

(1ldb) command alias -H "Print value in
ObjC context as object" -h "Print 0ObjC

object" —-- cpo expression -0 -1 objc —-

When lldb is in Swift mode, you can’t directly print registers like you can in Objective-C mode. However, you can use the expression command with the - objc option to
print in the context of ObjC. | like to create a command alias called cpo so | can just do cpo $rsi and have it work.

Debugging with Assembly
7eryITITTINNy XD
Swift Hint/ £ b

(1ldb) command alias -H "Print value in
ObjC context as object" -h "Print 0ObjC

object" —-- cpo expression -0 -1 objc —-

Put this in your ~/.lldbinit
Zh%z~/.lldbinitic AT

Debugging with Assembly
7eryITITTINNy XD
Swift Hint/ £ b
(Lldb) cpo $rsi

Works in Swift!
Swift CEI{ET S |

tmp.hop

STATTR SOME_DISTRUCTIONS o o S
Remove HI/LO macros 4 Removt
Graphic Views
BEGINNING 0F PROCI i
———— int _sdatine
; Variables rox = orgo.

g0, int arg) { Procedure
+ argl; 1 basic block
: - 8: int64_t, int func(int, int) Edit

Address Type Name var_10: int6d_t, -16
0x100000000 —mh_executs headsr Calling Convention: _File default (System... [
4 rlibdyl
0x100000414 aUsrlibdyld \eavasarssevste W
0x100000420 aUsrliblibsyste 0000000100000121 mov rbp, rsp e
0000000100000724 quord [rbpevar 8], rdi
0x100000120 _add 0000000100000125 o Type Callers
. = 000000010000072C or Direct _main+0x23
LAl 4 0000000100000130 » aword [rbptva
0x100000188 printf 0000000100000734

0000000100000737
0x100000faa ali 0000000100000138

0x100001000 dyld_stub_binder

0000000100000739
0x100001010 printf_ptr = ==

Method Called

0x100003000 _printf
0100003008 dyld_stub_binder
: int32_t,
int6d_t, -16
t, 20
Local Variables.

ity Disp. Type Name
0000000100000740 8 int64t vard
0000000100000741 mov P, rsp r r
0000000100000744. ox20 s6 et vario
0000000100000748 ox2
> dataflow analysis of procedures in segment _LINKEDIT € RBP based frame
> dataflow analysis of procedures in segment External Symbols

Analysis pass 9/10: remaining prologs search Lecae sl
Analysis pass 10/10: searching contiguous code area Saved Regs
> Last pass
Background analysis ended in 2ns BP Offset
>>> Purged:
Address 0x100000120, Segment _TEXT, _add + 0, Section _text,file offset 0x/20

Hopper Disassembler

https://www.hopperapp.com

Hopper is a very useful tool for disassembling Mac and iOS binaries, including apps, libraries, and system frameworks. It knows about Swift and Objective-C, and can
even create C-like pseudo code to help you understand what the assembly is doing. If you’re doing reverse engineering or disassembly frequently, it’s well worth buying.

Q-

P Tag Scope

Address
0x100000000
0x100000414
0x1000004a0
0x10000020
0x100000f40
0x100000f88
0x100000faa
0x100001000
0x100001010
0x100003000
0x100003008

Type

> T U 9> > 0

Address 0x100000f20, Segment

Str ¥ O

Name
_mh_execute_header
aUsrlibdyld
aUsrliblibsyste
_add

_main

printf

aLi
dyld_stub_binder
_printf_ptr
_printf
dyld_stub_binder

|| e |

>
>
>
>
>

dataflow analysis of procedures in seg

tmp.hop

mov
add

S_ATTR_SOME_INSTRUCTIONS

Variables:
var_8:
var_10:

lpee000010000020
0000000100000721
0000000100000124
0000000100000728
00000001000002C
000000010000030
0000000100000734
0000000100000737
0000000100000738

0000000100000139

Variables:
var_4:

var_10:
var_14:

0000000100000740
000000010000041
000000010000044
0000000100000748

DDAAAAATAAAAAFAA

int64_t, -8
int64_t, -16

_add:
push
mov
mov
mov
mov
add
mov
pop
ret

; endp
align

int32_t, -4
int64_t, -16
int32_t, -20

_main:
push
mov
sub
mov

BEGINNING OF

PROCI

rbp

rbp, rsp

qword [rbp+var_8], rdi
gqword [rbp+var_10], rsi
rsi, qword [rbp+var_8]
rsi, qword [rbp+var_10]
rax, rsi

rbp

rbp

rbp,
rsp,
eax,

rsp
0x20
ox2

ment _ LINKEDIT

dataflow analysis of procedures in segment External Symbols
Analysis pass 9/10: remaining prologs search
Analysis pass 10/1@0: searching contiguous code area

Last pass done

Background analysis ended in 2ms
>>>

TEXT, _add + 0, Section

text, file offset 0xf20

Clear Navigation Stack

Remove HI/LO macros Removi
» Graphic Views
int _add(int arg@, int argl) { v Procedure

rax = argl + argl; 1 basic block
return rax;

¥ int func(int, int)
Calling Convention:
Call graph

Type Callers

Direct _main+0x23

Type At

Local Variables

Disp. Type
-8 int64_t
-16 int64_t

RBP based frame

Locals Size: 0
Saved Regs: 8
BP Offset: 0

iy
Ui} Purged:

Edit

File default (System... &

Method Called

Name

var_8
var10

More Info D |5F#R

-reqister-calling-
convention-tutorial

http://cs.Imu.edu/~ray/notes/nasmtutorial/

https://mikeash.com/pyblog/friday-ga-2011-12-16-disassemblin
assembly-part-1.html

https://www.hopperapp.com

Here are some links with good information if you’d like to learn more.

https://www.raywenderlich.com/615-assembly-register-calling-convention-tutorial
https://www.raywenderlich.com/615-assembly-register-calling-convention-tutorial
http://cs.lmu.edu/~ray/notes/nasmtutorial/
https://mikeash.com/pyblog/friday-qa-2011-12-16-disassembling-the-assembly-part-1.html
https://mikeash.com/pyblog/friday-qa-2011-12-16-disassembling-the-assembly-part-1.html
https://www.hopperapp.com

Personal Info B4 D&%

‘Q: @armadsen

BEl: andrew@openreel.co

@: http://blog.andrewmadsen.com

If you want to contact me, you can find me on Twitter at @armadsen, email me, or visit my blog.

mailto:andrew@openreel.co

