
Assembly - You Can Do It!
アセンブリ - 頑張りましよ！

try! Swift Tokyo

２２日３月２０１９

Andrew Madsen

マドセン•アンドリュ

About Me 自己紹介

まずかんたんなじこしょうかいをします。

About Me 自己紹介
Lifelong Programmer

子どもの頃からプログラマーです

私はこどものころからプログラマーです。このしゃっしんには私は５さいでした。

About Me 自己紹介
Electrical Engineer
電気技師です

でんきこうがくもすきです。だいがくで電気工学をべんきょうしました。大学のあと、しごとでロボットをデザインしました。

About Me 自己紹介
I’ve been doing Cocoa

development since 2005.

2005年からCocoaプログラミング
をしてます。

２００５年にCocoaプログラミングをはじめました。そしたら、２００８年にiOSがとうじょうしてiOSプログラミングを始めました。

About Me 自己紹介
I teach iOS development at

Lambda School.

Lambda SchoolでiOSプログラミ
ングを教えます

いましごとはiOSプログラミングをおしえることです。LambdaSchoolというがっこではたらいています。このしごとをだいすきです。

About Me 自己紹介
I collect old computers
レトロパソコンを集めます

すきなしゅみはレトロパソコンをあつめことです。ほとんどにAppleものを集めます。

About Me 自己紹介
15 years ago, I lived in Japan.

I’ve loved it ever since.

１５年前に日本に住んでいました。
その時から日本が大好きです

I❤日本

１５年まえに日本に住んでいました。日本が大好きで　日本にいるのでほんとにうれしいです。

Assembly
アセンブリ😱

- Goal

- Intimidated

- Show you the basics, learn more

- Show you how it can help you

Let's talk about assembly. My goal here is not to teach you everything there is to know about assembly. After all, we only have 20 minutes. But I think most programmers
are a little intimidated by assembly language. I want to show you the basics so that you won't be scared of it, and instead will be ready to learn more. I also want to show
you how knowing assembly can help you be a better iOS developer and debugger.

😍Assembly
アセンブリ

なぜアセンブリ言語を学
んだ方がいいですか？

Why Learn Assembly?

- Don't usually need to write

- Understanding can help you with:

- Debugging

- Exploring Apple frameworks

You don’t often need to actually write assembly, unless you’re doing *extremely* performance intensive work, or working on very low-power embedded processors.
However, understanding assembly can help you with debugging. You can also explore Apple’s frameworks to understand exactly what they’re doing inside. Knowing a
little assembly goes a long way when trying to debug tricky problems, or to understand exactly _how_ something works.

Machine Code 機械言語

Assembly アセンブリ

C Objective-C C++

Swift

Lower Level
地球言語

Higher Level
高級言語

- Machine code

- Assembly is almost a direct representation of machine code

- When you compile, you get machine code

- Disassemble to see it in assembly

At the lowest level, the CPU in every device runs machine code, which is just binary numbers. Assembly is very close to being a direct representation of machine code,
it's just written in a way that's easier for humans to read, write, and understand. When you compile a language like Swift, C, Objective-C, or C++, the compiler outputs a
machine code executable. Various tools will "disassemble" this and show it to you as if it were assembly. This allows you to look at compiled code and understand what
it's doing without the source.

Registers
レジスター

In order to understand assembly, there are some vocabulary words we need to learn. The first is "register".

Registers レジスター
• Small, individual pieces of memory

• How many there are, names, and sizes depends on the CPU

• Some are general purpose, some dedicated, some have usage specified
by convention

• Directly inside the CPU, unlike RAM

• Fast

A register is a small, individual piece of memory. On x86_64, which we'll be talking about today, each register can hold an 8-byte (64-bit) value. The specifics of registers,
their names, sizes, and what they're used for, varies depending on the CPU architecture and platform you're on. Some registers are general purpose, meaning you can
use them for whatever you'd like. Some are dedicated to a specific usage by the CPU. And some have usage that is specified by convention. Registers are directly inside
the CPU, unlike RAM, which means that accessing them is very fast.

Registers レジスター

You can think of them like variables.
レジスタは可変と同じぐらいです

Think of registers like temporary variables in assembly code.

Registers レジスター
rax r8
rbx r9
rcx r10
rdx r11
rbp r12
rsp r13
rsi r14
rdi r15

On x86_64, there are 16 registers you should know about. They are rax, rbx, rcx, rdx, rbp, rsp, rsi, rdi, and r8-r15. We'll talk about what a few of these are used for later
on.

Mnemonics
ニーモニック

In assembly language, each line of code is a single instruction. The CPU defines the specific instructions you can use. We use mnemonics to refer to instructions in
assembly.

ニーモニック
A mnemonic is an easy to remember
name for a CPU instruction.

ニーモニックは覚えやすいCPU命令の
名前です。

Mnemonic

A mnemonic is an easy to remember name for a CPU instruction. Lets look at some examples.

Mnemonics ニーモニック
mov
add
sub
cmp
jne
nop
call
pop
ret

- Here are few common instruction mnemonics from the x86_64

- mov

- add

- sub

- cmp

- jne

- nop

- pop

- ret

Here are a few common instruction mnemonics from the x86_64 instruction set. mov moves data from one place to another. add adds two things together. sub subtracts
two things. cmp compares two numbers (essentially performing subtraction). jne stands for jump (if) not equal, and allows you to jump to a different part of the code
based on the results of the previous cmp instruction. nop is a "nothing" instruction. It tells the CPU to take a break and not do anything this cycle, and can be used to
introduce intentional delays. call is used to call a function/subroutine. pop pops the stack, and ret returns from a subroutine to the calling code.

This list is *far* from exhaustive, but all of these instructions are used frequently.

Mnemonics ニーモニック
mov r8 0x42
add r8 0x01
sub r8 0x01

cmp rdi 0x42
jne <label_or_addr>

nop
call <label_or_addr>

pop
ret

mov r8 0x42

In assembly language, each line of code will have an instruction followed by between 0 and 2 operands. For example, here mov r8 0x42 means mov (or copy) the hex
value 0x42 into register r8. add r8 0x01 means add one to the value in r8 (storing the result in r8).

Note that there are two common syntax formats used for assembly, Intel, and AT&T. While AT&T is the default in Xcode, I find Intel syntax easier to read, and will be using
that in this talk.

mov r8 0x42[

Instruction
命令

[

Destination
宛先

[

Source
ソース

Mnemonics ニーモニック

In Intel syntax, for instructions that take two operands, the destination of the operation (a register, memory location, etc.) is always the first operand, and the source of the
operation is the second operand.

Calling Convention
呼出規約

Calling Convention 呼出規約

long add(long a, long b) {
 return a + b;
}

int main(int argc, char *argv[]) {
 long c = add(2, 3);
 printf("%li", c);
}

When some code calls a function, it has to pass in its arguments, and retrieve the value the function returns. This is done by having the calling code put the argument
values in registers, while the function puts its return value in a register. Which registers to use for the arguments and return value have to be agreed upon by the calling
code and the function being called. “Calling convention” refers to the agreed upon registers to use for function arguments and return values. The specifics of the calling
convention depend on the CPU and platform. On UNIX systems running on x86_64 like iOS and OS X, the standard calling convention is the System V calling convention.

Calling Convention 呼出規約
argument 1 rdi
argument 2 rsi
argument 3 rdx
argument 4 rcx
argument 5 r8
argument 6 r9
return value rax

Here’s a list of arguments and the register used to pass them. If a function takes more than 6 arguments, additional arguments are passed on the stack. It’s helpful to
memorize this list, because you can use them in debugging.

Calling Convention 呼出規約

long add(long a, long b) {
 return a + b;
}

int main(int argc, char *argv[]) {
 long c = add(2, 3);
 printf("%li", c);
}

arg 1 rdi
arg 2 rsi
arg 3 rdx
arg 4 rcx
arg 5 r8
arg 6 r9

return value rax

Let’s take a look at how this works.

Calling Convention 呼出規約

long add(long a, long b) {
 return a + b;
}

int main(int argc, char *argv[]) {
 long c = add(2, 3);
 printf("%li", c);
}

arg 1 rdi
arg 2 rsi
arg 3 rdx
arg 4 rcx
arg 5 r8
arg 6 r9

return value rax

32

First, the arguments to the add call must be placed in the correct registers. According to the calling convention, the first argument, 2, goes in rdi.

Calling Convention 呼出規約

long add(long a, long b) {
 return a + b;
}

int main(int argc, char *argv[]) {
 long c = add(2, 3);
 printf("%li", c);
}

arg 1 rdi
arg 2 rsi
arg 3 rdx
arg 4 rcx
arg 5 r8
arg 6 r9

return value rax

3
2

The second argument, 3, goes in rsi.

Calling Convention 呼出規約

long add(long a, long b) {
 return a + b;
}

int main(int argc, char *argv[]) {
 long c = add(2, 3);
 printf("%li", c);
}

arg 1 rdi
arg 2 rsi
arg 3 rdx
arg 4 rcx
arg 5 r8
arg 6 r9

return value rax

3
2

Then, the add() function is called, and starts executing.

Calling Convention 呼出規約

long add(long a, long b) {
 return a + b;
}

int main(int argc, char *argv[]) {
 long c = add(2, 3);
 printf("%li", c);
}

arg 1 rdi
arg 2 rsi
arg 3 rdx
arg 4 rcx
arg 5 r8
arg 6 r9

return value rax

3
22

It needs to retrieve its arguments. So, it gets a (2) from rdi.

Calling Convention 呼出規約

long add(long a, long b) {
 return + b;
}

arg 1 rdi
arg 2 rsi
arg 3 rdx
arg 4 rcx
arg 5 r8
arg 6 r9

return value rax

3
2

2

3
int main(int argc, char *argv[]) {
 long c = add(2, 3);
 printf("%li", c);
}

And it gets the second argument, b, from rsi.

Calling Convention 呼出規約

long add(long a, long b) {
 return + ;
}

int main(int argc, char *argv[]) {
 long c = add(2, 3);
 printf("%li", c);
}

arg 1 rdi
arg 2 rsi
arg 3 rdx
arg 4 rcx
arg 5 r8
arg 6 r9

return value rax

3
2

2 35

It performs its calculation, then puts the return value (5) in rax.

Calling Convention 呼出規約

long add(long a, long b) {
 return + ;
}

int main(int argc, char *argv[]) {
 long c = add(2, 3);
 printf("%li", c);
}

arg 1 rdi
arg 2 rsi
arg 3 rdx
arg 4 rcx
arg 5 r8
arg 6 r9

return value rax

3
2

2 3

55

Control is returned to the call site in main().

Calling Convention 呼出規約

long add(long a, long b) {
 return + ;
}

int main(int argc, char *argv[]) {
 long c = add(2, 3);
 printf("%li", c);
}

arg 1 rdi
arg 2 rsi
arg 3 rdx
arg 4 rcx
arg 5 r8
arg 6 r9

return value rax

3
2

2 3

55

Now, to get the return value to assign to c, the value in the rax register is retrieved.

Calling Convention 呼出規約

long add(long a, long b) {
 return + ;
}

int main(int argc, char *argv[]) {
 long c = add(2, 3);
 printf("%li", c);
}

arg 1 rdi
arg 2 rsi
arg 3 rdx
arg 4 rcx
arg 5 r8
arg 6 r9

return value rax

3
2

2 3

5

5

Calling Convention 呼出規約

long add(long a, long b) {
 return + ;
}

int main(int argc, char *argv[]) {
 long c = add(2, 3);
 printf("%li",);
}

arg 1 rdi
arg 2 rsi
arg 3 rdx
arg 4 rcx
arg 5 r8
arg 6 r9

return value rax

3
2

2 3

5

5

And the execution proceeds to the next line.

long add(long a, long b) {
 return a + b;
}

Addition 加算

Let's look at a very simple function that takes two arguments, adds them together and returns the result. We're writing this in C, but it would look very similar written in
Swift.

_add:
0 push rbp
1 mov rbp, rsp
2 mov qword [rbp-8], rdi
3 mov qword [rbp-16], rsi
4 mov rsi, qword [rbp-8]
5 add rsi, qword [rbp-16]
6 mov rax, rsi
7 pop rbp
8 ret

long add(long a, long b) {
 return a + b;
}

Addition 加算

After compiling this function, if we look at the assembly, it will look like this. Note that despite this function only being one line long, it's 9 lines long in (unoptimized)
assembly! However, we can break this down line by line and understand what's going on. Let's dive in.

_add:
0 push rbp
1 mov rbp, rsp
2 mov qword [rbp-8], rdi
3 mov qword [rbp-16], rsi
4 mov rsi, qword [rbp-8]
5 add rsi, qword [rbp-16]
6 mov rax, rsi
7 pop rbp
8 ret

Addition 加算

Addition 加算
Set up stack

スタックを設定する

_add:
0 push rbp
1 mov rbp, rsp
2 mov qword [rbp-8], rdi
3 mov qword [rbp-16], rsi
4 mov rsi, qword [rbp-8]
5 add rsi, qword [rbp-16]
6 mov rax, rsi
7 pop rbp
8 ret

At the beginning of the function is what is called the function prologue. The function prolog sets some things up for the body of the function to execute. In particular, first
we set up the stack by pushing the existing stack pointer onto the stack, then saving a new base pointer.

Addition 加算

Get Arguments
引き数をフェッチする

_add:
0 push rbp
1 mov rbp, rsp
2 mov qword [rbp-8], rdi
3 mov qword [rbp-16], rsi
4 mov rsi, qword [rbp-8]
5 add rsi, qword [rbp-16]
6 mov rax, rsi
7 pop rbp
8 ret

Next, we get the arguments. Remember, that according to calling convention, rdi contains the first argument to a function, and rsi contains the second argument. We
copy these arguments on to the stack.

Addition 加算
_add:
0 push rbp
1 mov rbp, rsp
2 mov qword [rbp-8], rdi
3 mov qword [rbp-16], rsi
4 mov rsi, qword [rbp-8]
5 add rsi, qword [rbp-16]
6 mov rax, rsi
7 pop rbp
8 ret

Addition 加算

Load a into rsi
rsiにaを収納する

_add:
0 push rbp
1 mov rbp, rsp
2 mov qword [rbp-8], rdi
3 mov qword [rbp-16], rsi
4 mov rsi, qword [rbp-8]
5 add rsi, qword [rbp-16]
6 mov rax, rsi
7 pop rbp
8 ret

Now, we’re ready to actually to the addition. First, we copy `a` into the rsi register. Remember that rbp-8 here contains the value of the a argument due to line 2.

Addition 加算

Add b to rsi
rsiにbを加算する

_add:
0 push rbp
1 mov rbp, rsp
2 mov qword [rbp-8], rdi
3 mov qword [rbp-16], rsi
4 mov rsi, qword [rbp-8]
5 add rsi, qword [rbp-16]
6 mov rax, rsi
7 pop rbp
8 ret

Next, we’ll use the add instruction to add b to the value in rsi (a). rbp-16 contains the value of b, because of line 3.

Addition 加算

Load rax (return register)
rax (戻りレジスタ)を収納する

_add:
0 push rbp
1 mov rbp, rsp
2 mov qword [rbp-8], rdi
3 mov qword [rbp-16], rsi
4 mov rsi, qword [rbp-8]
5 add rsi, qword [rbp-16]
6 mov rax, rsi
7 pop rbp
8 ret

Finally, we’ll mov the value in rsi into rax. Calling convention specifies that rax should hold the return value of the function, and the code that called our `add()` function is
going to look there.

Addition 加算

Restore the stack
スタックを戻す

_add:
0 push rbp
1 mov rbp, rsp
2 mov qword [rbp-8], rdi
3 mov qword [rbp-16], rsi
4 mov rsi, qword [rbp-8]
5 add rsi, qword [rbp-16]
6 mov rax, rsi
7 pop rbp
8 ret

Finally, restore the stack base pointer to what it was when the function started, cleaning up after ourselves.

Addition 加算

Return
戻る

_add:
0 push rbp
1 mov rbp, rsp
2 mov qword [rbp-8], rdi
3 mov qword [rbp-16], rsi
4 mov rsi, qword [rbp-8]
5 add rsi, qword [rbp-16]
6 mov rax, rsi
7 pop rbp
8 ret

And we can return from the function!

Debugging with Assembly
アセンブリでデバッギング

Let’s talk about how you can use assembly to actually help you as an iOS developer. It comes up most often in debugging. Have you ever been debugging only to
experience a crash or error in system code, where you see a bunch of assembly? With just a little knowledge of assembly, you can often find useful information.

Debugging with Assembly
アセンブリでデバッギング

po $rdi

In Objective-C Mode:
Objective-Cのモード:

In lldb, in Objective-C mode, you can print a register by prefixing its name with a dollar sign ($). For example, here’s how you’d print the value in the rdi register.

Debugging with Assembly
アセンブリでデバッギング

(lldb)

Debugging with Assembly
アセンブリでデバッギング

(lldb)(lldb) b -[UIResponder touchesBegan:withEvent:]

Let’s say we want to break whenever the touchesBegan: method is called on any object. We can create a breakpoint with the b command in lldb, passing the Objective-C
method we want to break on.

Debugging with Assembly
アセンブリでデバッギング

(lldb) b -[UIResponder touchesBegan:withEvent:]
Breakpoint 3: where = UIKitCore`-[UIResponder touchesBegan:withEvent:], address = 0x000000010e7bc745
(lldb)

Debugging with Assembly
アセンブリでデバッギング

(lldb) b -[UIResponder touchesBegan:withEvent:]
Breakpoint 3: where = UIKitCore`-[UIResponder touchesBegan:withEvent:], address = 0x000000010e7bc745
(lldb)(lldb) po $rdi

Now, when our program stops because the breakpoint is hit, we want to know which object it was called on. Because it’s Objective-C (or dynamically dispatched Swift),
the function being called is actually objc_msgSend(), and the first argument is the receiver of the message. So, we can print out the rdi register to find out what object the
method was called on.

Debugging with Assembly
アセンブリでデバッギング

(lldb) b -[UIResponder touchesBegan:withEvent:]
Breakpoint 3: where = UIKitCore`-[UIResponder touchesBegan:withEvent:], address = 0x000000010e7bc745
(lldb) po $rdi
<UITableViewCellContentView: 0x7fbf76f24160; frame = (0 0; 414 55.5); opaque = NO; gestureRecognizers
= <NSArray: 0x600002607180>; layer = <CALayer: 0x6000028359c0>>
(lldb)

Debugging with Assembly
アセンブリでデバッギング

(lldb)(lldb) po (SEL)$rsi

(lldb) b -[UIResponder touchesBegan:withEvent:]
Breakpoint 3: where = UIKitCore`-[UIResponder touchesBegan:withEvent:], address = 0x000000010e7bc745
(lldb) po $rdi
<UITableViewCellContentView: 0x7fbf76f24160; frame = (0 0; 414 55.5); opaque = NO; gestureRecognizers
= <NSArray: 0x600002607180>; layer = <CALayer: 0x6000028359c0>>

If we print out the value of rsi, the second argument, we can see the selector. This is because the second argument to objc_msgSend() is the selector for the message
being sent.

Debugging with Assembly
アセンブリでデバッギング

(lldb) po (SEL)$rsi
"touchesBegan:withEvent:"
(lldb)

(lldb) b -[UIResponder touchesBegan:withEvent:]
Breakpoint 3: where = UIKitCore`-[UIResponder touchesBegan:withEvent:], address = 0x000000010e7bc745
(lldb) po $rdi
<UITableViewCellContentView: 0x7fbf76f24160; frame = (0 0; 414 55.5); opaque = NO; gestureRecognizers
= <NSArray: 0x600002607180>; layer = <CALayer: 0x6000028359c0>>

If we print out the value of rsi, the second argument, we can see the selector. This is because the second argument to objc_msgSend() is the selector for the message
being sent.

Debugging with Assembly
アセンブリでデバッギング

(lldb)(lldb) po (id)$rdx

(lldb) b -[UIResponder touchesBegan:withEvent:]
Breakpoint 3: where = UIKitCore`-[UIResponder touchesBegan:withEvent:], address = 0x000000010e7bc745
(lldb) po $rdi
<UITableViewCellContentView: 0x7fbf76f24160; frame = (0 0; 414 55.5); opaque = NO; gestureRecognizers
= <NSArray: 0x600002607180>; layer = <CALayer: 0x6000028359c0>>
(lldb) po (SEL)$rsi
"touchesBegan:withEvent:"

Finally, we might want to inspect the touch object(s) passed into the method. Even though the touches are the *first* argument of the -touchesBegan:withEvent: method,
they’re the *third* argument to objc_msgSend, so we need to look at the register for argument 3. Remembering back to our calling convention, that’s rdx.

Debugging with Assembly
アセンブリでデバッギング

(lldb) po (id)$rdx
{(
 <UITouch: 0x7fbf76f4dc50> phase: Began tap count: 1 force: 0.000 window: <UIWindow:
0x7fbf76f21ad0; frame = (0 0; 414 896); gestureRecognizers = <NSArray: 0x6000026048a0>; layer =
<UIWindowLayer: 0x600002834140>> view: <UITableViewCellContentView: 0x7fbf76f24160; frame = (0 0; 414
55.5); opaque = NO; gestureRecognizers = <NSArray: 0x600002607180>; layer = <CALayer:
0x6000028359c0>> location in window: {138, 525.5} previous location in window: {138, 525.5} location
in view: {138, 45.5} previous location in view: {138, 45.5}
)}
(lldb)

(lldb) b -[UIResponder touchesBegan:withEvent:]
Breakpoint 3: where = UIKitCore`-[UIResponder touchesBegan:withEvent:], address = 0x000000010e7bc745
(lldb) po $rdi
<UITableViewCellContentView: 0x7fbf76f24160; frame = (0 0; 414 55.5); opaque = NO; gestureRecognizers
= <NSArray: 0x600002607180>; layer = <CALayer: 0x6000028359c0>>
(lldb) po (SEL)$rsi
"touchesBegan:withEvent:"

And we can see the touch that triggered the touchesBegan method!

Debugging with Assembly
アセンブリでデバッギング

(lldb) b -[UIResponder touchesBegan:withEvent:]
Breakpoint 3: where = UIKitCore`-[UIResponder touchesBegan:withEvent:], address = 0x000000010e7bc745
(lldb) po $rdi
<UITableViewCellContentView: 0x7fbf76f24160; frame = (0 0; 414 55.5); opaque = NO; gestureRecognizers
= <NSArray: 0x600002607180>; layer = <CALayer: 0x6000028359c0>>
(lldb) po (SEL)$rsi
"touchesBegan:withEvent:"
(lldb) po (id)$rdx
{(
 <UITouch: 0x7fbf76f4dc50> phase: Began tap count: 1 force: 0.000 window: <UIWindow:
0x7fbf76f21ad0; frame = (0 0; 414 896); gestureRecognizers = <NSArray: 0x6000026048a0>; layer =
<UIWindowLayer: 0x600002834140>> view: <UITableViewCellContentView: 0x7fbf76f24160; frame = (0 0; 414
55.5); opaque = NO; gestureRecognizers = <NSArray: 0x600002607180>; layer = <CALayer:
0x6000028359c0>> location in window: {138, 525.5} previous location in window: {138, 525.5} location
in view: {138, 45.5} previous location in view: {138, 45.5}
)}
(lldb)

Debugging with Assembly
アセンブリでデバッギング

(lldb) command alias -H "Print value in
ObjC context as object" -h "Print ObjC
object" -- cpo expression -O -l objc --

Swift Hint / ヒント:

When lldb is in Swift mode, you can’t directly print registers like you can in Objective-C mode. However, you can use the expression command with the -l objc option to
print in the context of ObjC. I like to create a command alias called cpo so I can just do cpo $rsi and have it work.

Debugging with Assembly
アセンブリでデバッギング

Swift Hint / ヒント:
(lldb) command alias -H "Print value in
ObjC context as object" -h "Print ObjC
object" -- cpo expression -O -l objc --

Put this in your ~/.lldbinit
これを~/.lldbinitに入れて

Debugging with Assembly
アセンブリでデバッギング

(lldb) cpo $rsi

Works in Swift!
Swiftで動作する！

Swift Hint / ヒント:

Hopper Disassembler
https://www.hopperapp.com

Hopper is a very useful tool for disassembling Mac and iOS binaries, including apps, libraries, and system frameworks. It knows about Swift and Objective-C, and can
even create C-like pseudo code to help you understand what the assembly is doing. If you’re doing reverse engineering or disassembly frequently, it’s well worth buying.

More Info 他の情報
• https://www.raywenderlich.com/615-assembly-register-calling-

convention-tutorial

• http://cs.lmu.edu/~ray/notes/nasmtutorial/

• https://mikeash.com/pyblog/friday-qa-2011-12-16-disassembling-the-
assembly-part-1.html

• https://www.hopperapp.com

Here are some links with good information if you’d like to learn more.

https://www.raywenderlich.com/615-assembly-register-calling-convention-tutorial
https://www.raywenderlich.com/615-assembly-register-calling-convention-tutorial
http://cs.lmu.edu/~ray/notes/nasmtutorial/
https://mikeash.com/pyblog/friday-qa-2011-12-16-disassembling-the-assembly-part-1.html
https://mikeash.com/pyblog/friday-qa-2011-12-16-disassembling-the-assembly-part-1.html
https://www.hopperapp.com

Personal Info 自分の情報
🐦: @armadsen

📧: andrew@openreel.co

🌐: http://blog.andrewmadsen.com

If you want to contact me, you can find me on Twitter at @armadsen, email me, or visit my blog.

mailto:andrew@openreel.co

